Ospina-Alvarez, A. et al. (including Villasante, S.) (2021). Scientific Reports.
The use of Graph Theory on social media data is a promising approach to identify emergent properties of the complex physical and cognitive interactions that occur between humans and nature. To test the effectivity of this approach at global scales, Instagram posts from fourteen natural areas were selected to analyse the emergent discourse around these areas. The fourteen areas, known to provide key recreational, educational and heritage values, were investigated with different centrality metrics to test the ability of Graph Theory to identify variability in ecosystem social perceptions and use. Instagram data (i.e., hashtags associated to photos) was analysed with network centrality measures to characterise properties of the connections between words posted by social media users. With this approach, the emergent properties of networks of hashtags were explored to characterise visitors’ preferences (e.g., cultural heritage or nature appreciation), activities (e.g., diving or hiking), preferred habitats and species (e.g., forest, beach, penguins), and feelings (e.g., happiness or place identity). Network analysis on Instagram hashtags allowed delineating the users’ discourse around a natural area, which provides crucial information for effective management of popular natural spaces for people.